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Abstract. The possible zero of the proton electromagnetic form factor ratio GEp/GMp is studied within
a light-front quark model. The position of the zero is determined by the presence of a hard constituent
quark component in the nucleon wave function. The description of the data for the ratios µpGEp/GMp and
qF2p/F1p is improved when the hard-scale component of the nucleon wave function is considered.

PACS. 12.39.-x Phenomenological quark models – 13.40.-f Electromagnetic processes and properties –
13.40.Gp Electromagnetic form factors – 14.20.Dh Protons and neutrons

It is a challenge to understand the physical implica-
tions of the recent data of the proton electromagnetic
form factor ratios extracted from polarization-transfer ex-
periments [1,2], to our present view of nucleon structure.
The data for the µpGEp/GMp ratio [1,2] shows a strong
and almost linear decrease with momentum transfer up to
∼ 6 [GeV/c]2, while qF2p/F1p presents a plateaux starting
at q2 ∼ 2 [GeV/c]2.

An important issue in the discussion of the experi-
mental proton form factors is the inconsistence between
the ratio GEp/GMp extracted from the cross-section using
the Rosenbluth separation technique and the one obtained
directly from the polarization-transfer data. It is becom-
ing clear that the two-photon exchange process can solve
this problem, giving a considerable effect in the Rosen-
bluth data towards the ratio extracted from polarization-
transfer experiments, which only gets a few-percent cor-
rection [3–8]. Therefore, the decrease of the proton form
factor ratio with momentum is by now not under question.

An extrapolation of the linear decreasing trend of the
proton form factor ratio indicates a zero of GEp for q2 ∼
7.7 [GeV/c]2 [2], which is also incorporated in the new
empirical fit of the proton form factors [9].

The extension of the Gari-Krümpelmann model [10]
to fit the recent proton data also suggests the pres-
ence of a zero of GEp, although at a higher values of
q2 ∼ 14 [GeV/c]2. Also, the analysis of the nucleon charge
and magnetization using the new data suggested a zero
crossing in GEp near −q2 ∼ 10 [GeV/c]2 [11]. Another
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approach including a phenomenological pion cloud and a
quark core in the nucleon presents a GEp zero around
9 [GeV/c]2 [12].

The discovery at Jefferson Laboratory, that the ra-
tio qF2p/F1p is approximately constant for −q2 between
2 [GeV/c]2 and 6 [GeV/c]2 [1,2], shows that the helicity
of the hadron is not conserved in the photon absorp-
tion process in contrast to the expectations from per-
turbative QCD [13,14]. Within relativistic constituent
quark models, the qualitative and quantitative aspects of
the data were predicted or reproduced by many calcula-
tions [15–21], as discussed in detail in the recent review
of the nucleon electromagnetic form factors [22]. Light-
front relativistic models also leads to a variety of non-
spherical shapes in the proton spin-dependent quark den-
sities [23]. It was pointed out in ref. [20] that the con-
straint of Poincaré invariance within a light-front con-
stituent quark model of the nucleon [24,17] leads to a
substantial violation of the helicity conservation rule and
consequently to the flattening of qF2p/F1p in the range of
momentum transfers of the experiments.

The plateaux of the qF2p/F1p ratio between
2 [GeV/c]2 . −q2 . 6 [GeV/c]2 corresponds to the de-
crease of µpGEp/GMp and to the extrapolated zero at
−q2 ∼ 7.7 [GeV/c]2 [2]. The change of sign in GEp

was indeed predicted by three-quark light-front mod-
els [17,18,25] and by a point-form constituent quark
model [19].

The nucleon light-front model with tunable quark spin
couplings from an effective Lagrangian [25] is able to ac-
count for the nucleon static properties, while the zero
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of GEp appeared at too low values of −q2 between 3
to 4 [GeV/c]2. Using the Bakamjian-Thomas construc-
tion [26] for the spin coupling between the quarks in the
nucleon wave function, the zero of GEp appeared at higher
values of −q2 ∼ 5.5 [GeV/c]2 [17]. The essential differ-
ence between the two calculations resides in the argu-
ment of the Melosh rotations [27] in the nucleon wave
function, i.e., in Bakamjian-Thomas construction it cor-
responds to three noninteracting quarks, while in the effec-
tive Lagrangian scheme the kinematical quark momentum
is constrained by the nucleon momentum [28].

Let us remark, that in the present model the full mo-
mentum dependence of each quark is taken into account
in the wave function, and it should be distinguished from
quark-diquark models, where the diquark is taken as an-
other constituent (see, e.g., [29]). Our nucleon wave func-
tion model resembles the one proposed in ref. [30], with
the distinctions that we use a completely symmetrical mo-
mentum component of the wave function depending only
on M0, and the spin coupling coefficients come from an
effective Lagrangian.

The effective Lagrangian approach to the quark spin
coupling in the nucleon [25], accounts for the static elec-
tromagnetic observables with a totally symmetric momen-
tum component of the wave function, however it has to
be improved to be able to describe the new µpGEp/GMp

data. In this approach, the effective Lagrangian for the
N -q coupling is given by

LN-3q = α mN ε
lmnΨ (l)iτ2γ5Ψ

C
(m)Ψ (n)ΨN

+(1− α)εlmnΨ (l)iτ2γµγ5Ψ
C
(m)Ψ (n)i∂

µΨN +H.C., (1)

where τ2 is the isospin matrix, the color indices are
{l,m, n} and εlmn is the totally antisymmetric symbol.

The conjugate quark field is ΨC = CΨ
>

, where C = iγ2γ0

is the charge conjugation matrix; α is a parameter to
choose the spin coupling parameterization.

The momentum scale of the nucleon wave function for
Gaussian and power law shapes with constituent quark
mass of 0.22GeV, was found in our previous work to
be about 0.6–0.8GeV from the fit of the nucleon mag-
netic moments and its radius [25]. Also, we observed that
the neutron charge form factor constrains the relativis-
tic quark spin coupling scheme, suggesting that the scalar
pair (α = 1) in the effective Lagrangian is preferred.

However, the effective Lagrangian approach to the
quark spin coupling, while it allows a reasonable account
of the static electromagnetic nucleon observables with
a totally symmetric momentum component of the wave
function, has a too small momentum scale which leads to
the zero of GEp at much lower values of q2 than the ex-
perimental data indicates [2,9]. Therefore, within this ap-
proach, one is led to introduce another term in the momen-
tum component of the wave function which would repre-
sent a higher momentum scale and fit the ratio GEp/GMp

without changing the conclusions found at low momentum
transfers.

In recent works with light-front models [31–33] ap-
plied to mesons, a high momentum physical scale appears

related to the short-ranged interaction between the con-
stituent quarks. It was found a reasonable description of
the meson spectrum and pion properties including a Dirac-
delta interaction in the mass-squared operator [31–33],
inspired by the hyperfine interaction from the effective
one-gluon exchange between the constituent quarks [31,
34]. The model [33] reveals some of the physics contained
in the observation of the fact that the trajectories of the
mesons in the (n,M2)-plane are almost linear [35,36]. The
model naturally incorporates the small pion mass as a con-
sequence of the short-ranged attraction in the spin-zero
channel, which is also responsible for the splitting in the
pion and rho-meson mass spectrum [33].

The short-ranged attractive part of the quark-quark
interaction, present in the Godfrey and Isgur model [37],
generates as well a high momentum component in
the light-cone pion wave function above 1 [GeV/c] and
successfully described the electroweak structure of the
pion [38]. Nonetheless, it was pointed out that the exist-
ing electroweak data was not enough to obtain an unam-
biguous conclusion about the presence of hard-constituent
quarks in the hadron wave function [39]. Recently, this
discussion led to a new insight when the valence-quark
light-cone momentum distribution was probed in the ex-
periment of diffractive dissociation of 500 [GeV/c] π− into
dijets [40], which supports the importance of the asymp-
totic part of the wave function [14] and the presence of a
high momentum component in the pion wave function [32].

Motivated by the previous discussion, which indicates
the necessity of a strong short-ranged attractive interac-
tion in the spin-zero channel, and a high momentum tail
in the pion valence component, we also introduce a high
momentum tail in the valence component of the nucleon
wave function and test it in our calculation of the form
factors. Indeed, the quality of the model results in respect
to the new data for the µpGEp/GMp ratio improves sub-
stantially, as we will show.

The constituent quark is a complex degree of free-
dom which includes the physics of an infinite number
of Fock states of the fundamental theory, as it comes
from the nonperturbative quark dressing. At low momen-
tum the constituent quark, as a collective degree of free-
dom, is subject to soft physics and its properties should
evolve with momentum and asymptotically to the current
quark ones. The strong interaction dresses nonperturba-
tively the quark giving a nontrivial structure to the con-
stituent quark. For example, in the study performed by
ref. [41] for light mesons, it was used a rainbow trunca-
tion of the Schwinger-Dyson equations combined with the
ladder Bethe-Salpeter which implied in a dressed quark-
photon vertex and a running quark mass. The nontrivial
constituent quark structure was also necessary to be con-
sidered in phenomenological studies of the electromagnetic
structure of the nucleon, through a constituent quark form
factor [42,43].

Therefore, two main effects should be in principle con-
sidered in the model: the running quark mass and the
constituent quark form factor. As the constituent quark
mass in our model is already pretty small (0.22GeV) and
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in principle it should decrease by increasing the momen-
tum, the nonconstant behavior will not have an important
impact in the form factors as the average momentum of
the quarks increases. We believe that the decrease of the
constituent quark mass for higher momentum will have no
major effect in our calculations, because the momentum
terms are dominant in the form factors as well as in the
momentum component of the wave function (the quark
mass appears throughM0, the free mass of the three-quark
system, see eq. (2)). However, the constituent quark form
factor cannot be neglected and it will be considered in our
calculations of the nucleon electromagnetic form factors.

Our aim in this work is to study the performance of a
two-scale shape of the momentum component of the wave
function in a light-front model in which an effective La-
grangian construction of the spin coupling between the
quarks, eq. (1), with a scalar form is used. The scalar form
of the coupling is chosen to allow a simultaneous repro-
duction of the magnetic moment and electric form factor
of the neutron [25].

We choose a simple two-term power law shape [44,34]
for the momentum component of the nucleon wave func-
tion without a node, written as

ΨPower

(

M2
0

)

=

NPower

[(

1 +M2
H/β

2

1 +M2
0 /β

2

)p

+

(

1 +M2
H/β

2
1

1 +M2
0 /β

2
1

)p]

, (2)

which presents an asymptotic behavior as suggested by
QCD. The normalization is determined by the proton
charge. The width parameters, i.e., the characteristic mo-
mentum scales of the wave function are β and β1, whileM0

is the free mass of the three-quark system (see eq. (A.8)).
The lower momentum scale is essentially determined by
the static nucleon observables and the higher one is related
to the zero of GEp. The mass scale parameter MH gives
the large value ofM0 at which the two terms of eq. (2) are
equal. The parameter MH can be interpreted as a refer-
ence value of the free mass of the three-quark system for
which the second term of eq. (2) is important. Note that
the asymptotic behavior of eq. (2) does not depend on
the particular values of the parameters. The totally sym-
metric forms of eq. (2), due the relativistic spin coupling
coefficients which depend on momentum, effectively lead
to the breaking of the SU(6) flavor symmetry as discussed
in ref. [18].

The power law fall-off from general QCD perturbative
arguments has a value of p = 3.5 in eq. (2) [44,34]. From
the point of view of the static electroweak observables,
the value of p does not present an independent feature,
once one static observable is fitted, the other is strongly
correlated as long as p > 2 [25,44]. Here, we choose for
our calculations p = 3. Note that the power law wave
function was predicted in QCD by counting rules tak-
ing into account the exchange of hard gluons between the
quarks, but it was applied in the study of the static elec-
troweak properties of the proton [44,34] producing essen-
tially the same results as a Gaussian wave function [25].
Although the power law wave function is justified in QCD
by hard physics, it appears to work phenomenologically

at low momentum. This occurs due to the choice of the
M0-dependence in the power law form, which for small
values of M0 cannot be distinguished from a commonly
used Gaussian wave function.

The light-front formulation of the nucleon electroweak
form factors from ref. [25] uses the effective Lagrangian,
eq. (1), to construct the coupling of the quark spin in
the valence component of the wave function. The form
factor calculation begins with the impulse approximation
defined within covariant field theory. The nucleon virtual
photon absorption amplitude is projected on the three-
dimensional hypersurface, x+ = x0 + x3 = 0, (see, e.g.,
ref. [45]). The elimination of the relative light-front time
between the particles in favor of the global time propa-
gation [46] comes from the analytical integration in the
individual light-front energies (k− = k0 − k3) in the two-
loop amplitude. Then, the momentum component of the
nucleon light-front wave function is introduced into the re-
maining form of the two-loop three-dimensional momen-
tum integrations which define the matrix elements of the
electroweak current [25,47,48].

The plus component of the nucleon current (J+
N =

J0
N + J3

N ) for momentum transfers satisfying the Drell-
Yan condition q+ = q0 + q3 = 0 is used to obtain
the electromagnetic form factors. The contribution of the
Z-diagram is minimized in a Drell-Yan reference frame,
while the wave function contribution to the current is
maximized [34,45,47–49]. We use the Breit frame, where
the four-momentum transfer q = (0, ~q⊥, 0) is such that
(q+ = 0) and ~q⊥ = (q1, q2), satisfying the Drell-Yan con-
dition.

The nucleon electromagnetic form factors are calcu-
lated with the matrix elements of the current J+

N (q2) in the
light-front spinor basis in the Breit frame with the Drell-
Yan condition [15,25]. The Dirac and Pauli form factors
are, respectively, given by

F1N

(

q2
)

=
1√
1 + η

〈↑ |J+
N

(

q2
)

| ↑〉,

F2N

(

q2
)

=
1

√
η
√
1 + η

〈↑ |J+
N

(

q2
)

| ↓〉, (3)

where η = −q2/4mN . The momentum transfer in the
Breit frame was chosen along the x-direction, i.e., ~q⊥ =

(
√

−q2, 0).
The nucleon electric and magnetic form factors (Sachs

form factors) are given by

GEN

(

q2
)

= F1N

(

q2
)

+
q2

4m2
N

F2N

(

q2
)

,

GMN

(

q2
)

= F1N

(

q2
)

+ F2N

(

q2
)

, (4)

where N = n or p. µN = GMN (0) is the magnetic moment
and κN = F2N (0) is the anomalous one. The charge mean

square radius is r2N = 6dGEN (q2)
dq2 |q2=0.

The microscopic matrix elements of the nucleon elec-
tromagnetic current are derived from the effective La-
grangian, eq. (1), within the light-front impulse approxi-
mation which is represented by the four three-dimensional
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Table 1. Nucleon electromagnetic static observables and zero of GEp(q
2) for one- and two-scale models. The momentum scale

parameters of the two terms of the wave function, eq. (2), are shown in the first, second and third columns, respectively. The
proton and neutron magnetic moments and mean square radii, are presented in the fourth through seventh columns. In the last
column the square momentum transfer at which GEp(q

2

0) = 0 is shown. The references for the experimental values are given in
the table.

β [GeV] β1 [GeV] MH [GeV] µp [µN ] r2p [fm]2 µn [µN ] r2n [fm]2 q20 [GeV/c]2

0.396 10.56 5.92 3.07 1.09 −1.89 −0.07 9.04

0.447 – – 3.11 1.06 −1.91 −0.08 3.28

0.66 ±0.06 [50]

Expt. – – 2.79 0.74± 0.02 [51] −1.91 −0.113± 0.005 [53] ∼ 7.7

0.77± 0.03 [52]

(2)

(1)

(3)

(1a ) (1b)

(1c ) (1d )

Fig. 1. Diagrammatic representation of the nucleon photo-
absorption amplitude. The gray blob represents the spin in-
variant for the coupled quark pair in the effective Lagrangian,
eq. (1). The black circle in the fermion line represents the ac-
tion of the current operator on the quark.

two-loop diagrams of fig. 1 [25], which embodies the an-
tisymmetrization of the quark state in the wave function.
The matrix elements of the electromagnetic current are
calculated considering only the process on quark 3, due to
the symmetrization of the microscopic matrix element af-
ter the factorization of the color degree of freedom. There-
fore, the microscopic operator of the nucleon electromag-
netic current is the sum of each amplitude represented by
the diagrams (1a) to (1d):

J+
N

(

q2
)

= J+
aN

(

q2
)

+4J+
bN

(

q2
)

+2J+
cN

(

q2
)

+2J+
dN

(

q2
)

(5)

with the appropriate statistical factors, from the identity
of quarks 1 and 2. Another factor of 2 multiplies J+

bN due
to the exchange between the pairs in the initial and fi-
nal nucleons, which gives the same matrix element as a
consequence of time reversal and parity transformation
properties. The expressions of the microscopic matrix ele-
ments of the plus component of the current are presented
in detail in the appendix, following closely ref. [25].

In this work, we perform calculations with the scalar
coupling α = 1 in the effective Lagrangian, eq. (1). It
corresponds to the spin coupling coefficients in which the

Melosh rotations of the quark spin have the arguments
defined by the kinematical momentum of the quarks in
pair and in the nucleon rest frames constrained by the to-
tal momentum [28], while in the Bakajmian-Thomas con-
struction the argument of the Melosh rotations is defined
in the rest frame of three free particles.

The relativistic model of the nucleon adopted here as-
sumes the dominance of the valence component in the
wave function and in the computation of the static elec-
tromagnetic observables and form factors. Therefore, the
results are strongly constrained and essentially the gen-
eral features found in our calculations are independent of
the detailed shape of the wave function, but of course de-
pend on the momentum scales in eq. (2). In the numerical
evaluation of the form factors, we use a constituent quark
mass value of m = 0.22GeV [25,38].

A single scale light-front wave function, Gaussian or
power law, with momentum scale parameter adjusted from
the fit of the neutron or proton magnetic moment, is
known to have a reasonable proton charge radius, due to
the strong correlation between these observables [44,34,
25]. However, the zero of GEp appears at too low squared
momentum transfer, q20 between 3-4 [GeV/c]2. When we
attempt to fit q20 to values around 8 [GeV/c]2 by increas-
ing the momentum scale in the Gaussian and power law
wave functions, we find an unreasonably small proton size
and consequently wrong magnetic moments as well, which
leave no room for improvements in the framework of those
one-scale models.

By introducing a two-scale power law momentum com-
ponent of the wave function in the calculation with scalar
coupling, we are able to get a reasonable description of
both the nucleon static observables and the zero of GEp,
as shown in table 1. We have also considered a con-
stituent quark form factor which produces a quark ra-
dius of 0.18 fm, within the values suggested by ref. [43]. A
dipole form factor was chosen,

fq
(

q2
)

=
1

(

1− q2

γ

)2 (6)

with γ = 14 [GeV/c]2 and no anomalous magnetic mo-
ment for the constituent quark. The value of γ was
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Fig. 2. Proton form factor ratio. Results for the two-scale
wave function (solid line) and one-scale model (dashed line).
The inset magnifies the plot up to 9 [GeV/c]2. Experimental
data from refs. [1] (squares) and [2] (triangles).

strongly constrained by the fit of the proton magnetic form
factor for momentum transfers above few GeV.

The scalar coupling provides the best agreement with
the neutron radius, when the neutron magnetic moment is
fitted [25]. We have chosen to fit the neutron magnetic mo-
ment due to the strong sensitivity of GEn to its value [25].
The high momentum scale MH ∼ 6GeV, should be un-
derstood as a reference value and we point out that we
cannot exclude lower values for MH , and indeed the effect
of the new parameterization is seen at lower momentum
transfer scales.

In fig. 2, we show the results for the proton
µpGEp(q

2)/GMp(q
2) ratio for the scalar model. From ta-

ble 1 one could anticipate the results we found. Reason-
able agreement with the data [1,2] is seen for the two-
scale model which has the zero of GEp(q

2) around the
suggested experimental value of 7.7 [GeV/c]2. Due to the
same asymptotic behavior of the wave function, we find
that the one-scale and two-scale models predict a similar
strong decrease in the form factor ratio with increasing
momentum transfers.

The calculations for the proton qF2p(q
2)/κpF1p(q

2) ra-
tio are shown in fig. 3. The one-scale model fails com-
pletely to describe the experimental data, while a reason-
able agreement with the data [1,2] is seen for the two-
scale model. As expected, with increasing momentum the
results for the two-scale model tend to show the same be-
havior as for the one-scale model. (Fine tuning could de-
lay a little the increase of qF2p(q

2)/κpF1p(q
2) ratio). The

proton magnetic form factor distinguishes both parame-
terizations, the two-scale model exhibits a slower decrease
than the one-scale model above 2–3 [GeV/c].

Figure 4 shows the neutron form factors. The elec-
tric form factor in both models are qualitatively consis-
tent with the data. Also both agree below 9 [GeV/c]2

consistent with the onset of the high momentum scale.
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Fig. 3. Proton form factor ratio qF2p(q
2)/κpF1p(q

2) and mag-
netic form factor. Curves labeled as in fig. 2. The experimental
data presented in the top and bottom frames are taken from
refs. [1,2] and from the compilation of ref. [22], respectively.

The magnetic form factor has a zero for the two-scale
model while the one-scale model exhibits a monotonic de-
crease with momentum transfer. The results for GMn be-
low 3 [GeV/c]2 do not depend on the model as µn for both
calculations are quite near (see table 1).

In summary, we have shown that it is reasonable to
expect that two-scale wave function models of eq. (2) pa-
rameterize the lowest Fock state component of the nucleon
light-front wave function. Within effective models inspired
by QCD, the interaction between the constituent quarks in
the squared-mass operator has an attractive short-ranged
component in the scalar channel. The valence component
of a wave function is an eigenstate of an effective mass
operator equation for constituent quark degrees of free-
dom, in which the effective interaction contains in prin-
ciple all the complexity of QCD [31,34]. In general, an
attractive short-ranged interaction will produce a high
momentum component in the wave function, which gives
physical meaning to the present two-scale model.

We show how to improve the nucleon light-front model
based on an effective Lagrangian approach to the spin cou-
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Fig. 4. Neutron electromagnetic form factors. Curves labeled
as in fig. 2. Triangles are the experimental data taken from the
compilation of ref. [22]; square and circles are the data from
refs. [54] and [55], respectively.

pling of the quarks by introducing a physically motivated
two-scale wave function. The model improves the descrip-
tion of the present data of the proton form factors ratios
and static properties, as well as the neutron form factor
data. The importance of the spin coupling scheme for the
neutron electric form factor found for the two-scale model
is consistent with previous results [25]. Pionic cloud effects
and Poincarè invariance [21], produces results for the neu-
tron electric form factor similar to ours. This may imply
that to some extent, pionic effects are partially included
by our parameterization. The hard momentum scale is
strongly related to the position of the GEp zero. The zero
in the magnetic neutron form factor is related to the hard
scale and the scalar coupling form. The present data for
the proton form factor ratios suggests a hard momentum
scale of about 6 [GeV/c].
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Appendix A. Matrix elements of the

microscopic current

The derivation of the matrix elements of the microscopic
nucleon current operator composed by J+

βN , β = a, b, c, d

of eq. (5) in terms of the valence nucleon wave function fol-
lows closely ref. [25]. They are represented by the Feynman
diagrams of fig. 1. Note that the blobs in the figure repre-
sent the color anti-triplet coupling of a pair of quark fields
in scalar-isocalar (εlmnΨ (l)iτ2γ5Ψ

C
(m)) or vector-isoscalar

combination (εlmnΨ (l)iτ2γµγ5Ψ
C
(m)), from the effective La-

grangian of eq. (1).
The integrations over the minus component of the mo-

mentum will be performed to eliminate the relative light-
front time in the intermediate-state propagations [46].
This procedure allows to introduce the momentum com-
ponent of the valence light-front wave function in the com-
putation of form factors (see [47]).

The nucleon electromagnetic current J+
N derived from

the effective Lagrangian has contribution from each photo-
absorption amplitude given by the Feynman two-loop tri-
angle diagrams of figs. 1a to 1d. The matrix elements of
the current are evaluated between light-front spinor states:

u(p, s) =
/p+mN

2
√

p+mN

γ+γ0

(

χPauli
s

0

)

. (A.1)

The photon is absorbed by quark 3, and the diagram
of fig. 1a corresponds to

〈s′|J+
aN

(

q2
)

|s〉 = −〈N |Q̂q|N〉Tr[iτ2(−i)τ2]

×
∫

d4k1d
4k2

(2π)8
Λ
(

ki, p
′
)

Λ(ki, p)ū
(

p′, s′
)

S
(

k′3
)

γ+

×S(k3)u(p, s)Tr
[

S(k2) (αmN + (1− α)/p)

×γ5Sc(k1)γ
5
(

αmN + (1− α)/p′
)

]

(A.2)

with S(p) = 1

/p−m+iε
, and Sc(p) = [γ0γ2 1

/p−m+iε
γ0γ2]>.

The four-momentum of the virtual quark 3 after the
photo-absorption process is k′3 = k3 + Q. The matrix el-
ement of the quark charge operator in isospin space is
〈N |Q̂q|N〉. The function Λ(ki, p) is chosen to introduce the
momentum part of the three-quark light-front wave func-
tion, after the integrations over k− are performed. The
contribution to the electromagnetic current represented
by fig. 1b is given by

〈s′|J+
bN

(

q2
)

|s〉 = −〈N |Q̂q|N〉

×
∫

d4k1d
4k2

(2π)8
Λ
(

ki, p
′
)

Λ(ki, p)ū
(

p′, s′
)

S
(

k′3
)

γ+S(k3)

× (αmN + (1− α)/p) γ5Sc(k1)γ
5

×
(

αmN + (1− α)/p′
)

S(k2)u(p, s). (A.3)
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The contribution to the electromagnetic current repre-
sented by fig. 1c is given by

〈s′|J+
cN

(

q2
)

|s〉 = 〈N |τ2Q̂qτ2|N〉

×
∫

d4k1d
4k2

(2π)8
Λ
(

ki, p
′
)

Λ(ki, p)ū
(

p′, s′
)

S(k1)

× (αmN + (1− α)/p) γ5Sc(k3)γ
+Sc

(

k′3
)

γ5

×
(

αmN + (1− α)/p′
)

S(k2)u(p, s). (A.4)

The contribution to the electromagnetic current repre-
sented by fig. 1d is given by

〈s′|J+
dN

(

q2
)

|s〉 = −Tr
[

Q̂q

]

×
∫

d4k1d
4k2

(2π)8
Λ
(

ki, p
′
)

Λ(ki, p)ū
(

p′, s′
)

S(k2)u(p, s)

×Tr
[

γ5
(

αmN + (1− α)/p′
)

S
(

k′3
)

γ+S(k3)

× (αmN + (1− α)/p) γ5Sc(k1)
]

. (A.5)

The light-front coordinates are defined as k+ = k0+k3,
k− = k0 − k3, k⊥ = (k1, k2). In each term of the nucleon
current, from J+

aN to J+
dN , the Cauchy integrations over k−1

and k−2 are performed. That means the on-mass-shell pole
of the Feynman propagators for the spectator particles
1 and 2 of the photon absorption process are taken into
account. In the Breit frame with q+ = 0 there is a maximal
suppression of light-front Z-diagrams in J+ [47,48]. Thus
the components of the momentum k+

1 and k+
2 are bounded

such that 0 < k+
1 < p+ and 0 < k+

2 < p+ − k+
1 . The four-

dimensional integrations of eqs. (A.2) to (A.5) are reduced
to the three-dimensional ones of the null plane.

After the integrations over the light-front energies the
momentum part of the wave function is introduced into
the microscopic matrix elements of the current by the sub-
stitution [25,47]:

1

2(2π)3
Λ(ki, p)

m2
N −M2

0

→ Ψ
(

M2
0

)

. (A.6)

Further, the same momentum component of the wave
function is chosen for all N -q coupling schemes for simpli-
fication. Note, that the mixed (α = 1/2) case could have
different momentum dependences for each spin coupling,
however, we choose the same momentum functions just to
keep contact to the BT approach.

The analytical integration of eq. (A.2) of the k− com-
ponents of the momenta yields

〈s′|J+
aN

(

q2
)

|s〉 = 2p+2〈N |Q̂q|N〉

×
∫

d2k1⊥dk
+
1 d2k2⊥dk

+
2

k+
1 k

+
2 k

+2
3

θ
(

p+ − k+
1

)

θ
(

p+ − k+
1 − k+

2

)

×Tr
[

(/k2+m)(αmN+(1−α)/p) (/k1+m)
(

αmN+(1−α)/p′
)

]

×ū
(

p′, s′
)(

/k′3+m
)

γ+(/k3+m)u(p, s)Ψ
(

M
′2
0

)

Ψ
(

M2
0

)

, (A.7)

where k2
1 = m2 and k2

2 = m2. The free three-quark
squared mass is defined by

M2
0 =p

+

(

k2
1⊥+m

2

k+
1

+
k2
2⊥+m

2

k+
2

+
k2
3⊥+m

2

k+
3

)

−p2
⊥
, (A.8)

and M ′2
0 =M2

0 (k3 → k′3, ~p⊥ → ~p ′
⊥
).

The other terms of the nucleon current, as given by
eqs. (A.3)-(A.5) are also integrated over the k− momen-
tum components of particles 1 and 2 following the same
steps used to obtain eq. (A.7) from eq. (A.2):

〈s′|J+
bN

(

q2
)

|s〉 = p+2〈N |Q̂q|N〉

×
∫

d2k1⊥dk
+
1 d2k2⊥dk

+
2

k+
1 k

+
2 k

+ 2
3

θ
(

p+ − k+
1

)

θ
(

p+ − k+
1 − k+

2

)

×ū(p′, s′)(/k′3+m)γ+(/k3+m) (αmN+(1−α)/p) (/k1+m)

×(αmN+(1−α)/p′)(/k2+m)u(p, s)Ψ
(

M
′2
0

)

Ψ
(

M2
0

)

, (A.9)

〈s′|J+
cN

(

q2
)

|s〉 = p+2〈N |τ2Q̂qτ2|N〉

×
∫

d2k1⊥dk
+
1 d2k2⊥dk

+
2

k+
1 k

+
2 k

+ 2
3

θ
(

p+ − k+
1

)

θ
(

p+ − k+
1 − k+

2

)

×ū
(

p′, s′
)

(/k1+m) (αmN+(1−α)/p) (/k3+m)γ+
(

/k′3+m
)

×
(

αmN+(1−α)/p′
)

(/k2+m)u(p, s)Ψ
(

M
′2
0

)

Ψ
(

M2
0

)

, (A.10)

〈s′|J+
dN

(

q2
)

|s〉 = p+2 Tr
[

Q̂q

]

×
∫

d2k1⊥dk
+
1 d2k2⊥dk

+
2

k+
1 k

+
2 k

+ 2
3

θ
(

p+ − k+
1

)

θ
(

p+ − k+
1 − k+

2

)

×Tr
[

(αmN + (1− α)/p′) (/k′3 +m)γ+

×(/k3 +m) (αmN + (1− α)/p) (/k1 +m)
]

×ū
(

p′, s′
)

(/k2 +m)u(p, s)Ψ
(

M
′2
0

)

Ψ
(

M2
0

)

. (A.11)

The normalization is chosen such that the proton charge
is unity.
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